所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。若把数学知识看作一幅构思巧妙的蓝图而建筑起来的一座宏伟大厦,那么数学方法相当于建筑施工的手段,而这张蓝图就相当于数学思想。
一、了解《大纲》要求,把握教学方法
1.明确基本要求,渗透“层次”教学。《数学大纲》对初中数学中渗透的数学思想、方法划分为三个层次,即“了解”、“理解”和“会应用”。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在教学大纲中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。教师在教学过程中要激发学生学习数学的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在教学中,要认真把握好“了解”、“理解”、“会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,否则,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们失去信心。
2.从“方法”了解“思想”,用“思想”指导“方法”。在初中数学中,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。因此,在初中数学教学中,加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,在教学中,通过对具体数学方法的学习,使学生逐步领略这些数学思想;同时,数学思想的指导,又深化了数学方法的运用。这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中,教学才能卓有成效。
二、渗透数学思想和方法的原则
1.循序渐进,螺旋上升的原则。
学生对学习数学、数学思想和方法的领会、掌握具有一个“从特殊到一般,从具体到抽象,从感性到理性,从低级到高级”的认识过程。学生对某一思想和方法首先是产生感性认识,经过多次反复练习,然后逐渐概括上升为理性认识,最后在对数学知识的掌握中,对形成的数学思想和方法进行验证和发展,进一步通过用数学知识解决问题从而加深理性认识。
2.坚持钻研教材,层次渗透的原则。《数学大纲》对初中数学中渗透的数学思想和方法划分为三个层次,即“了解“”理解”和“会应用”。要认真把握好“了解”“理解“”会应用”这三个层次。渗透层次数学教学思想和方法常常蕴含于教材之中,在熟悉教材、钻研教材的基础上去领悟隐含于教材字里行间的数学思想和方法。如初一“用字母表示数的变元思想”方程思想,从数到式的过渡,是由特殊到一般,由具体到抽象的飞跃。
三、在展现数学知识的形成与应用过程中,提炼数学思想方法
数学知识发生的过程也是其思想方法产生的过程。在此过程中,向学生提供丰富的、典型的、正确的直观背景材料,采取“问题情境—建立模型—解释、应用与拓展”的模式,通过对相关问题情境的研究为有效切入点,对知识发生过程的展示,使学生的思维和经验全部投入到接受问题、分析问题和感悟思想方法的挑战之中,并在此过程中领会如数感、符号感、空间观念、统计观念、应用意识和推理能力等数学思想方法。
四、有计划、有目的、有组织地上好思想方法训练课
小结课、复习课是系统知识,深化知识,使知识内化的最佳课型,也是渗透数学思想方法的最佳时机,通过对所学知识系统整理,挖掘提炼解题指导思想,归纳总结上升到思想方法的高度,掌握本质,揭示规律。初中数学中有许多体现“分类讨论”思想的知识和技能。如:(1)实数的分类;(2)按角的大小和边的关系对三角形进行分类;(3)求任意实数的绝对值分大于零、等于零、小于零三种情况讨论;(4)把两个三角形的形状、大小关系揭示得较为清楚的方法,是把两个三角形分为相似与不相似两大类;……所有这些,充分体现了分类讨论的思想方法,有利于学生认识物质世界事物之间的联系与区别。
数学思想和方法是数学问题的本质反映,追求的是“授人以渔”。在课堂教学中渗透数学思想和方法,更新数学教学观念,不仅能使学生理解问题的本质,而且可以帮助学生通过数学思想方法的迁移去认识教材以外的数学问题的本质特征,丰富学生的思维世界,使学生成为有创造能力、可持续发展的新时代人才。
怎样将数学思想和方法应用到初中数学教学中
一.转化
在有理数的运算中将减法转化为加法,除法转化为乘法。在解二元一次方程组时通过消化“二元”为“一元”,这些都是转化思想方法应用的典型例证。应用转化的思想,首先要把握好化繁为简,化难为易,化未知为已知这个转化的根本方向和基本原则。其次也要掌握好常用的一些转化的具体方法。
如应用“变形”、“换元”、“添辅助线”等转化方法。特别是数轴建立,使数与点之间建立了对应关系,使数形的结合和互相转化有了可能,例如我们可以用数形转化的思想解绝对值方程|X一2|=3。
从数轴上看,这个绝对值方程表示的几何意义是,什么点和数2表示的点的距离等于3 ? 从如图的数轴可以直观地得出,这样的点有两个,即数5和-1表示的点。
应用转化的思想解数学题,还有两点是必须注意的,一是要重视转化条件,没有一定的条件就不能转化,二是不能忽略基础知识,多项式相乘转化为单项式乘法求解,而单项式的乘法还要进一步转化为更基本的有理数乘法和指数运算,因此从某种意义上讲,转化就是把复杂的问题转化为基本问题。
二.比较
比较是思维和理解的基础,每当我们学习新知识的时候,我们都会习惯性地思考,它是在什么旧知识的基础上建立起来的,这就是比较。
比较可分为类比和对比,类比是相同点的比较,对比是不同点的比较,把列代数式与列算式进行类比,借助于列算式的经验来学习列代数式,就能做到以旧推新,有利于新知识的掌握。相反数与倒数是一对很容易混淆的概念,通过比较,找出不同,明确差异,就能避免混淆。
应用比较的思想要注意把类比与对比有机结合,既“比”联系,又“比”区别。将一元一次不等式与一元一次方程的解法相比较,它们的解法步骤是完全相同的,解法原理是类似的,不同之处有两点:一是在于不等式两边乘以或除以同一个负数时不等号要改变方向;二是不等式的解集是无限多个数。经过这样求“同”存“异”比较,就能更准确地把握一元一次不等式的解法。
比较的思想方法在数学学习中还有着十分广泛的应用,如特殊与一般的比较、知识的“纵向”和“横向”的比较、正确与错误的比较等等,重要的是要掌握比较的思想,养成比较的习惯,学会比较的方法。
三.分类
分类是根据研究的需要,按照一定的原则对研究对象的一个划分,分类的思想也是一种重要的数学思想方法。
初中数学教材中分类思想的应用比比皆是:有理数的分类,直线位置关系的分类等等。
正确完整的分类应该满足下列原则:⑴按同一标准分类;⑵没有遗漏;⑶没有重复。
如把有理数分为:正有理数,负有理数。这就遗漏了既不是正有理数,又不是负有理数的有理数“0”。
分类,能帮助我们把纷繁的材料或研究对象条化、系统化,形成简化的、有效率的思维方式。需要注意的是应把握好在什么情况才需要分类及如何分类,盲目的分类及分类不当反而会把简单的问题复化,把复杂的问题弄得更加复杂。
一、数学思想方法在初中数学教学中的重要性
在《初中数学课程标准》的总体目标中,明确地提出了:“通过义务教育阶段的数学学习,学生应能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能”。新课程把基本的数学思想方法作为基础知识的重要组成部分,在数学课程标准中明确地提出来,这不仅是课程标准体现义务教育性质的重要表现,也是对学生实施创新教育、培养创新思维的重要保证。
什么是数学思想方法?数学思想是对数学知识和方法本质的认识,是解决数学问题的根本策略,它直接支配着数学的实践活动;数学方法是解决问题的手段和工具,是解决数学问题时的程序、途径,它是实施数学思想的技术手段。数学思想带有理论性特征,而数学方法具有实践性的特点,数学问题的解决离不开以数学思想为指导,以数学方法为手段。数学思想方法是从数学内容中提炼出来的数学学科的精髓,是数学素养的重要内容之一,数学思想方法揭示了概念、原理、规律的本质,是沟通基础与能力的桥梁。
在初中数学教学中,常见的数学思想有:转化思想、方程思想、数形结合思想、分类讨论思想等等;常见的数学方法有:待定系数法、配方法、换元法、分析法、综合法、类比法等等。
在初中数学教学中,渗透数学思想方法,可以克服就题论题,死套模式,数学思想方法可以帮助我们加强思路分析,寻求已知和未知的联系,提高分析解决问题的能力,从而使思维品质和能力有所提高。提高学生的数学素质、必须紧紧抓住数学思想方法这一重要环节,因为数学思想方法是提高学生的数学思维能力和数学素养的重要保障。
在初中数学教材中集中了大量的优秀例题和习题,它们所体现的数学知识和数学方法固然重要,但其蕴涵的数学思想却更显重要,作为初中数学教师,要善于挖掘例题、习题的潜在功能。在初中数学教学中,教师应向学生提供充分从事数学活动的机会,帮助学生在自主探索和合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。因此,在初中数学教学中,教师必须重视对学生进行数学思想方法的渗透与培养。
二、几种常见的数学思想方法在初中数学教学中的应用
(一)渗透转化思想,提高学生分析解决问题的能力
所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为易,化未知为已知的有力手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。
我们对转化思想并不陌生,中学数学中常用的化高次为低次、化多元为一元,都是转化思想的体现。在具体内容上,有加减法的转化、乘除法的转化、乘方与开方的转化、数形转化等等。例如:初中数学“有理数的减法”和“有理数的除法”这两节教学内容中,教材是通过“议一议”的形式,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”、“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学,实践告诉我们,往往是越简单、越浅显的例子,越能引起学生的认同,所以我们不能错过这一绝佳的提高学生的思维品质的机会。
再如北京市义务教育课程改革实验教材数学第13册第4章中《对图形的认识》,它实际上是“空间与图形”的最基本部分。教材在编排设计上是围绕认识基本几何体、发展学生空间观念展开的,在过程上是让学生经历图形的变化、展开与折叠等数学活动过程的,在活动中引导学生认识常见的几何体以及点、线、面和一些简单的平面图形,通过对某些几何体的主视图、俯视图、左视图的认识,在平面图形与立体图形的转化中发展学生的空间观念。在授课过程中要特别注意图形的转化思想的渗透,在实际操作中,因为大部分学生在小学时就积累一定的感性处理方法,我们要注意的就是在学生原有知识结构的基础上,将其上升为理论高度,引导学生归纳概括得出一般性的结论:在初中阶段,绝大部分立体图形的问题都可以转化为平面图形的问题,从而使学生真正体会到立体与平面的相互转化思想。
又如在解方程组时,通过消元这个手段,把二元一次方程组转化为一元一次方程去解;在解多边形问题时,又是通过添加辅助线这个手段,把多边形的问题转化为三角形的问题加以解决等等。数学中的有理数和无理数、整式和分式、已知和未知、特殊和一般、常量和变量、整体和局部等处处都蕴涵着转化这一辩证思想。因此,在初中数学教学中,应有意识地渗透转化思想。如在学习分式方程时,不能只简单介绍分式方程的概念和解法,教学时,应让学生充分经历整式方程与分式方程的观察、比较、分析、探索过程,启发学生说出分式方程的解题基本思想,学生在经历了充分的探索后,自然认识到:通过把分式方程两边都乘以最简公分母,去掉分母,就可以把分式方程转化为整式方程,学生感悟到分式方程与整式方程概念和解法的实质后,会收到一种居高临下,深入浅出的教学效果。因此,在初中数学教学中,要注重渗透转化思想,可以说转化思想是科学世界观在数学中的体现,是最重要的数学思想之一,不仅可以培养学生的科学意识,而且可以提高学生的观察能力、探索能力和分析解决问题的能力。
(二)渗透数形结合的思想方法,提高学生的数形转化能力和迁移思维的能力
恩格斯曾说过:“纯数学的对象是现实世界的空间形式和数量关系”。而“数”和“形”是数学中两个最基本的概念。“数”是数量关系的体现,而“形”则是空间形式的体现。它们两者既有对立的一面,又有统一的一面。我们在研究数量关系时,有时要借助于图形直观地去研究,而在研究图形时,又常常借助于线段或角的数量关系去探求。数形结合思想是指将数与图形结合起来解决问题的一种思维方式。数和式是问题的抽象和概括、图形和图像是问题的具体和直观的反映。因此,数和形是研究数学的两个侧面,利用数形结合,常常可以使所要研究的问题化难为易,使复杂问题简单化、抽象问题具体化。正如著名数学家华罗庚所说的那样:“数无形,少直观,形无数,难入微”,这句话阐明了数形结合思想的重要意义。
在初中代数列方程解应用题教学中,很多例题都采用了图示法进行分析,在教学过程中要充分利用图形的直观性和具体性,引导学生从图形上发现数量关系,找出解决问题的突破口,学生掌握了数形结合这一思想要比掌握一个公式或一种具体方法更有价值,对解决问题更具有指导意义。
又如,计算:1+3=?1+3+5=?1+3+5+7=?1+3+5+7+9=?并根据计算结果,探索规律。
数学思想方法与初中数学教学
在这道题的教学中,首先应让学生思考:从上面这些算式中你能发现什么?让学生经历观察(每个算式和结果的特点)、比较(不同算式之间的异同),归纳(可能具有的规律)、提出猜想的过程。在探索过程中鼓励学生进行相互合作交流,提供如下的帮助:列出一个点阵,用图形的直观来帮助学生进行猜想。这就是典型的把数量关系问题转化到图形中来完成的题型,充分体现了数形结合思想。
再如在讲“圆与圆的位置关系”时,可自制圆形纸板,进行运动实验,让学生首先从形的角度认识圆与圆的位置关系,然后可激发学生积极主动探索:两圆的位置关系反映到数上有何特征?这种借助于形通过数的运算推理研究问题的数形结合思想,在教学中要不失时机地渗透,这样不仅可以提高学生的迁移思维能力,还可以培养学生的数形转换能力和多角度思考问题的习惯。
此外,数学教学中,我们正是借助数形结合的载体——数轴,学习研究了数与点的对应关系,相反数、绝对值的定义,有理数大小比较的法则等,利用数形结合思想大大减少了引进这些概念的难度。数形结合思想的渗透不能简单的通过解题来实现和灌输,应该落实在课堂教学的学习探索过程中,我在讲“相反数”这节课时,首先提出问题:“在上体育课时,体育李老师请小明和小强分别站在李老师的左右两边(三人在同一条直线上),并与李老师相距1米。你能说出小明、小强与李老师的位置关系有什么相同点和不同点吗?如果李老师所站的位置是数轴的原点,你能把小明、小强所站的位置用数轴上的点A、B表示出来吗?它们在数轴上的位置有什么关系?”
数学思想方法与初中数学教学
让学生动手实践,在数轴上分别确定表示这些数的点。 观察并思考:这些点在位置上有怎样的特征。引导学生归纳总结,形成相反数的概念,在此基础上继续提出问题:若两个数互为相反数,从“数、形”的角度看,它们有什么相同点和不同点呢?学生思考得到:从“数”的角度看:若两个数互为相反数,则只有符号不同。教师强调:只有、两个、互为。从“形”的角度看:相同点是它们到原点的距离相等;不同点是两个点分别在数轴原点的两侧。之后,我进一步引导学生观察数轴,是否所有的相反数都成对出现?有特殊的吗?学生通过讨论得出:除0以外,相反数是成对出现的。本节课借助数轴,帮助学生理解相反数的概念,进一步渗透数形结合的思想。教学中,从学生身边的生活实例入手,先从互为相反数的两数在数轴上的特征,即它们分别位于原点的两旁,且与原点距离相等的实例出发,让学生带着问题观察数轴上的点,鼓励学生用自己的语言说出猜想,揭示这两数的几何形象。充分利用计算机课件的直观性帮助学生验证猜想,增强对相反数概念的感性认识,充分利用数轴帮助思考,把一个抽象的相反数的概念,化为直观的几何形象。在这种情况下给出互为相反数的定义:只有符号不同的两个数称互为相反数。特别地规定:0的相反数是0。学生从“数”和“形”两个方面认识相反数概念的本质特征,体会数形结合的思想,显得自然亲切,水到渠成,同时也让学生在数形结合的思想方法的引领下感受到了成功,初步领略和尝试了它的功用,是一个非常好的渗透背景。
本文来自作者[徐翌菡]投稿,不代表史超号立场,如若转载,请注明出处:https://www.feischool.com/sch/513.html
评论列表(3条)
我是史超号的签约作者“徐翌菡”
本文概览:所谓数学思想,就是对数学知识和方法的本质认识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂,数学方法是数学的行为...
文章不错《如何在初中数学教学中给学生渗透数学思想》内容很有帮助